Abstract

In this work, we report on modeling results obtained with our recently developed simulation tool enabling nanoscopic description of electronic processes in X-ray irradiated ferromagnetic materials. With this tool, we have studied the response of Co/Pt multilayer system irradiated by an ultrafast extreme ultraviolet pulse at the M-edge of Co (photon energy ~60 eV). It was previously investigated experimentally at the FERMI free-electron-laser facility, using the magnetic small-angle X-ray scattering technique. Our simulations show that the magnetic scattering signal from cobalt decreases on femtosecond timescales due to electronic excitation, relaxation, and transport processes both in the cobalt and in the platinum layers, following the trend observed in the experimental data. The confirmation of the predominant role of electronic processes for X-ray induced demagnetization in the regime below the structural damage threshold is a step toward quantitative control and manipulation of X-ray induced magnetic processes on femtosecond timescales.

Details

Title
Modeling of ultrafast X-ray induced magnetization dynamics in magnetic multilayer systems
Author
Kapcia, K. J. 1   VIAFID ORCID Logo  ; Tkachenko, V. 2   VIAFID ORCID Logo  ; Capotondi, F. 3   VIAFID ORCID Logo  ; Lichtenstein, A. 4   VIAFID ORCID Logo  ; Molodtsov, S. 5 ; Müller, L. 6   VIAFID ORCID Logo  ; Philippi-Kobs, A. 6   VIAFID ORCID Logo  ; Piekarz, P. 7   VIAFID ORCID Logo  ; Ziaja, B. 8   VIAFID ORCID Logo 

 Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland (GRID:grid.5633.3) (ISNI:0000 0001 2097 3545) 
 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland (GRID:grid.418860.3) (ISNI:0000 0001 0942 8941); European XFEL GmbH, Schenefeld, Germany (GRID:grid.434729.f) (ISNI:0000 0004 0590 2900) 
 Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy (GRID:grid.5942.a) (ISNI:0000 0004 1759 508X) 
 European XFEL GmbH, Schenefeld, Germany (GRID:grid.434729.f) (ISNI:0000 0004 0590 2900); University of Hamburg, Hamburg, Germany (GRID:grid.9026.d) (ISNI:0000 0001 2287 2617) 
 European XFEL GmbH, Schenefeld, Germany (GRID:grid.434729.f) (ISNI:0000 0004 0590 2900) 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland (GRID:grid.418860.3) (ISNI:0000 0001 0942 8941) 
 Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland (GRID:grid.418860.3) (ISNI:0000 0001 0942 8941) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2719938550
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.