Full text

Turn on search term navigation

Copyright © 2022 Xue Xing et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Predicting spatiotemporal congestion situations of a traffic network is a prerequisite for urban traffic control. This study proposes a spatiotemporal traffic congestion situation prediction method based on the recurrent gated unit-convolutional neural network (GRU-CNN). Considering the time and space attributes of traffic data, the third-order tensor of the traffic data is extracted from the time domain, and the GRU is used to predict the traffic flow parameters of the traffic network. Then, the third-order tensor of multisource spatiotemporal traffic data is compressed into traffic data images and combined with the spatial structure. The feature extraction technology of a CNN is used to extract and identify the traffic network congestion features. Actual urban traffic network data are selected for model verification. The multistep prediction of the traffic flow parameters effectively ensures prediction accuracy. The proposed model is trained by the actual classification dataset. The prediction results of the test set demonstrate the model’s reliability. Based on predicting the traffic parameters of the network, this model can give a highly accurate judgment of the traffic situation for the entire network. Compared with other models, the proposed model further improves the accuracy of road network traffic state discrimination and has better robustness.

Details

Title
GRU-CNN Neural Network Method for Regional Traffic Congestion Prediction Serving Traffic Diversion Demand
Author
Xue Xing 1   VIAFID ORCID Logo  ; Li, Xiaoyu 1   VIAFID ORCID Logo  ; Zhai, Yaqi 1   VIAFID ORCID Logo 

 College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China 
Editor
Kuruva Lakshmanna
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
15308677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2720246530
Copyright
Copyright © 2022 Xue Xing et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.