It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Robust millimeter-sized spherical particles with controlled compositions and microstructures hold promises of important practical applications especially in relation to continuous flow cascade catalysis. However, the efficient fabrication methods for producing such particles remain scare. Here, we demonstrate a liquid marble approach to fabricate robust mm-sized porous supraparticles (SPs) through the bottom-up assembly of silica nanoparticles in the presence of strength additive or surface interactions, without the need for the specific liquid-repellent surfaces used by the existing methods. As the proof of the concept, our method was exemplified by fabricating biomimetic cascade catalysts through assembly of two types of well-defined catalytically active nanoparticles. The obtained SP-based cascade catalysts work well in industrially preferred fixed-bed reactors, exhibiting excellent catalysis efficiency, controlled reaction kinetics, high enantioselectivity (99% ee) and outstanding stability (200~500 h) in the cascades of ketone hydrogenation-kinetic resolution and amine racemization-kinetic resolution. The excellent catalytic performances are attributed to the structural features, reconciling close proximity of different catalytic sites and their sufficient spatial isolation.
Robust millimeter-sized spherical particles with controlled compositions and microstructures hold promises of important practical applications. Here the authors develop a liquid marble method to facilely fabricate robust millimeter-sized supraparticles with controlled microstructures through the bottom-up assembly of silica nanoparticles.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Shanxi University, School of Chemistry and Chemical Engineering, Taiyuan, China (GRID:grid.163032.5) (ISNI:0000 0004 1760 2008)
2 University of Leeds, Food Colloids Group, School of Food Science and Nutrition, Leeds, UK (GRID:grid.9909.9) (ISNI:0000 0004 1936 8403)
3 Shanxi University, School of Chemistry and Chemical Engineering, Taiyuan, China (GRID:grid.163032.5) (ISNI:0000 0004 1760 2008); Shanxi University, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan, China (GRID:grid.163032.5) (ISNI:0000 0004 1760 2008)