Abstract

Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 ±0.3× 109/MeV/sr/shot with an energy of 2.8 ±1.9 MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications.

Details

Title
Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters
Author
Jinno, Satoshi 1 ; Kanasaki, Masato 2 ; Asai, Takafumi 2 ; Matsui, Ryutaro 3 ; Pirozhkov, Alexander S. 4 ; Ogura, Koichi 4 ; Sagisaka, Akito 4 ; Miyasaka, Yasuhiro 4 ; Nakanii, Nobuhiko 4 ; Kando, Masaki 4 ; Kitagawa, Nobuko 5 ; Morishima, Kunihiro 5 ; Kodaira, Satoshi 6 ; Kishimoto, Yasuaki 7 ; Yamauchi, Tomoya 2 ; Uesaka, Mitsuru 8 ; Kiriyama, Hiromitsu 9 ; Fukuda, Yuji 9 

 The University of Tokyo, Nuclear Professional School, School of Engineering, Naka, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X); Japan Atomic Energy Agency (JAEA), Tono Geoscience Center, Toki, Japan (GRID:grid.20256.33) (ISNI:0000 0001 0372 1485) 
 Kobe University, Graduate School of Maritime Sciences, Kobe, Japan (GRID:grid.31432.37) (ISNI:0000 0001 1092 3077) 
 Kyoto University, Graduate School of Energy Science, Gokasho, Uji, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033); Kyoto University, Non-linear / Non-Equilibrium Plasma Science Research UNIT, Gokasho, Uji, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033) 
 National Institutes for Quantum Science and Technology (QST), Kansai Photon Science Institute (KPSI), Kizugawa, Japan (GRID:grid.258799.8) 
 Nagoya University, Furo-cho, Nagoya, Japan (GRID:grid.27476.30) (ISNI:0000 0001 0943 978X) 
 National Institutes for Quantum Science and Technology (QST), National Institute of Radiological Sciences (NIRS), Chiba, Japan (GRID:grid.482503.8) (ISNI:0000 0004 5900 003X) 
 Kyoto University, Graduate School of Energy Science, Gokasho, Uji, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033); Kyoto University, Non-linear / Non-Equilibrium Plasma Science Research UNIT, Gokasho, Uji, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033); Kyoto University, Institute of Advanced Energy, Gokasho, Uji, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033) 
 The University of Tokyo, Nuclear Professional School, School of Engineering, Naka, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X) 
 National Institutes for Quantum Science and Technology (QST), Kansai Photon Science Institute (KPSI), Kizugawa, Japan (GRID:grid.26999.3d) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724089551
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.