It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Chlorella spp., Spirulina spp., and fucoidan dry powders, are commercialized as food supplements and are considered safe for human consumption. Their broad-spectrum antiviral properties have been studied, however, their effect against SARS-CoV-2 remains unknown. We investigated the potential antiviral activity of three algae powders: Chlorella vulgaris, Arthrospira maxima (Spirulina) and fucoidan purified from marine brown algae Sargassum spp. against SARS-CoV-2 infection in vitro. Vero cells were incubated with 70 μg/ml of each algae powder and either 50 or 100 TCID50/ml of SARS-CoV-2, in two types of experiments (pretreatment and simultaneous) and comparing two kinds of solvents (DMEM and DMSO). Chlorella vulgaris powder, inhibited SARS-CoV-2 infection in all assays; viral RNA was significantly reduced in supernatants at 24, 48, 72, and 96 h post-infection, the highest difference in viral load (8000-fold) was observed after 96 h. Arthrospira maxima powder inhibited SARS-CoV-2 infection using 50 TCID50/ml for both experimental schemes, but protection percent was lower when viral inoculum was increase to 100 TCID50/ml; viral RNA decreased 48 h after infection, reaching a 250-fold difference at 72 h. Fucoidan powder partially inhibited SARS-CoV-2 infection since no CPE was observed in 62.5% of trated cultures in DMEM, but the antiviral activity was increased to 100% of protection when DMSO was used as solvent. All the algae samples showed high antiviral activity against SARS-CoV-2 with a SI above of 18. These results suggest that all three algae samples are potential therapeutic candidates for the treatment of COVID-19.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Medical and Pharmaceutical Biotechnology Unit, Guadalajara, Mexico
2 CREAMOS MAS S.A. DE C.V, Guadalajara, Mexico