Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the problem of sizing and placement of constant and switching capacitors in electrical distribution systems is modelled considering the load uncertainty. This model is formulated as a multicriteria mathematical problem. The risk of voltage violation is calculated, and the stability index is modelled using fuzzy logic and fuzzy equations. The instability risk is introduced as the deviation of our fuzzy-based stability index with respect to the stability margin. The capacitor placement objectives in our paper include: (i) minimizing investment and installation costs as well as loss cost; (ii) reducing the risk of voltage violation; and (iii) reducing the instability risk. The proposed mathematical model is solved using a multi-objective version of a genetic algorithm. The model is implemented on a distribution network, and the results of the experiment are discussed. The impacts of constant and switching capacitors are assessed separately and concurrently. Moreover, the impact of uncertainty on the multi-objectives is determined based on a sensitivity analysis. It is demonstrated that the more the uncertainty is, the higher the system cost, the voltage risk and the instability risk are.

Details

Title
Risk-Based Capacitor Placement in Distribution Networks
Author
Falaghi, Hamid 1 ; Ramezani, Maryam 1 ; Elyasi, Hasan 2 ; Farhadi, Mahdi 3 ; Estebsari, Abouzar 4 

 Faculty of Electrical and Computer Engineering, University of Birjand, Birjand 9717434765, Iran 
 South Khorasan Electricity Distribution Company (SKEDC), Birjand 9719866945, Iran 
 Faculty of Computer and Industries, Birjand University of Technology, Birjand 9719866981, Iran 
 School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, UK 
First page
3145
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724232524
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.