Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a new passive cooling technology, space radiation cooling has great potential for development because the cooling itself has no energy consumption, and the radiation heat exchanger does not affect the appearance, with low noise and low cost. Several rectangular stainless steel plates coated with RLHY-2 material are used as the transmitter for the field test. The experimental results show that, in the case of no windscreen, the increase of outdoor humidity will reduce the cooling effect, and the greater the humidity, the more pronounced the reduction effect. Significantly when the humidity increases from 78% to 90%, the cooling power of the cooler reduces from 102 to 67 W/m2. The thickness of the cloud layer also affects the cooling effect of the space radiative cooler. Compared with the clear weather, the cooling power of the cooler is reduced by 11.65 W/m2 on average under foggy weather conditions. Compared with the force-1 wind and the force-3 wind, the cooling effect of the cooler is the worst under the condition of the force-2 wind, and the average cooling power is only 49.76 W/m2. In addition, laying polyethylene (PE) film as a windscreen is beneficial to improving the radiative cooling effect, and the difference in surface temperature between the two is up to 3 °C. This research provides a theoretical basis and practical reference for applying radiative cooling technology in different regions and seasons and adjusting and improving its effects.

Details

Title
Experimental Study on the Performance of a Space Radiation Cooling System under Different Environmental Factors
Author
Zhuang, Zhaoyi 1 ; Xu, Yanbiao 1 ; Wu, Qian 2 ; Liu, Bing 2 ; Bowen, Li 1 ; Zhao, Jin 1 ; Yang, Xuebin 1 

 College of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China 
 Shandong Superego Ground Source Heat Pump Technology Co., Ltd., Binzhou 256600, China 
First page
7404
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724237335
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.