Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate solar radiation forecasting is essential to operate power systems safely under high shares of photovoltaic generation. This paper compares the performance of several machine learning algorithms for solar radiation forecasting using endogenous and exogenous inputs and proposes an ensemble feature selection method to choose not only the most related input parameters but also their past observations values. The machine learning algorithms used are: Support Vector Regression (SVR), Extreme Gradient Boosting (XGBT), Categorical Boosting (CatBoost) and Voting-Average (VOA), which integrates SVR, XGBT and CatBoost. The proposed ensemble feature selection is based on Pearson coefficient, random forest, mutual information and relief. Prediction accuracy is evaluated based on several metrics using a real database from Salvador, Brazil. Different prediction time-horizons are considered: 1 h, 2 h and 3 h ahead. Numerical results demonstrate that the proposed ensemble feature selection approach improves forecasting accuracy and that VOA performs better than the other algorithms in all prediction time horizons.

Details

Title
Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection
Author
Solano, Edna S 1   VIAFID ORCID Logo  ; Dehghanian, Payman 2   VIAFID ORCID Logo  ; Affonso, Carolina M 1   VIAFID ORCID Logo 

 Faculty of Electrical Engineering, Federal University of Para, Belem 66075-110, PA, Brazil 
 Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA 
First page
7049
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724244109
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.