Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, the on-site measuring of the size of a steel pipe cross-section for scaffold construction relies on manual measurement tools, which is a time-consuming process with poor accuracy. Therefore, this paper proposes a new method for steel pipe size measurements that is based on edge extraction and image processing. Our primary aim is to solve the problems of poor accuracy and waste of labor in practical applications of construction steel pipe inspection. Therefore, the developed method utilizes a convolutional neural network and image processing technology to find an optimum solution. Our experiment revealed that the edge image that is proposed in the existing convolutional neural network technology is relatively rough and is unable to calculate the steel pipe’s cross-sectional size. Thus, the suggested network model optimizes the current technology and combines it with image processing technology. The results demonstrate that compared with the richer convolutional features (RCF) network, the optimal dataset scale (ODS) is improved by 3%, and the optimal image scale (OIS) is improved by 2.2%. At the same time, the error value of the Hough transform can be effectively reduced after improving the Hough algorithm.

Details

Title
Cross-Section Dimension Measurement of Construction Steel Pipe Based on Machine Vision
Author
Yu, Fuxing; Qin, Zhihu; Li, Ruina; Ji, Zhanlin
First page
3535
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724265788
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.