Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The conventional post-annealing (CPA) process is frequently employed and regarded a crucial step for high-quality perovskite thin-films. However, most researchers end up with unwanted characteristics because controlling the evaporation rate of perovskite precursor solvents during heat treatment is difficult. Most perovskite thin-films result in rough surfaces with pinholes and small grains with multiple boundaries, if the evaporation of precursor solvents is not controlled in a timely manner, which negatively affects the performance of perovskite solar cells (PSCs). Here, we present a surface-confined post-annealing (SCPA) approach for controlling the evaporation of perovskite precursor solvents and promoting crystallinity, homogeneity, and surface morphology of the resulting perovskites. The SCPA method not only modulates the evaporation of residual solvents, resulting in pinhole-free thin-films with large grains and fewer grain boundaries, but it also reduces recombination sites and facilitates the transport of charges in the resulting perovskite thin-films. When the method is changed from CPA to SCPA, the power conversion efficiency of PSC improves from 18.94% to 21.59%. Furthermore, as compared to their CPA-based counterparts, SCPA-based PSCs have less hysteresis and increased long-term stability. The SCPA is a potentially universal method for improving the performance and stability of PSCs by modulating the quality of perovskite thin-films.

Details

Title
Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells
Author
Sajid, Sajid 1   VIAFID ORCID Logo  ; Salem Alzahmi 1   VIAFID ORCID Logo  ; Imen Ben Salem 2   VIAFID ORCID Logo  ; Obaidat, Ihab M 3 

 Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates 
 College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates 
 National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates 
First page
3352
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724271892
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.