Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The objective of this study is to describe the stress relaxation behavior of an epoxy-based fiber-reinforced material. An existing incremental formulation of an orthotropic linear viscoelastic material behavior was adapted to Voigt notation and to the special case of an isotropic material. Virtual relaxation tests on a representative volume element were performed, and the behavior of individual components of the relaxation tensor of the transversely isotropic composite material was determined. The study demonstrated that in the case of only one viscoelastic material, each component of the relaxation tensor can be described in terms of a scalar form factor and the behavior of the neat resin. The developed method was implemented in an incremental finite element model (FEM) analysis to calculate the stress relaxation on the macroscopic ply level. A validation of the approach has shown a promising agreement up to a limit below the glass transition temperature of 15 °C in longitudinal and 35 °C in transverse direction. This study therefore demonstrates a novel way to incrementally describe the macroscopic viscoelastic behavior of materials with a single viscoelastic component with good controllability for engineering purposes.

Details

Title
Incremental Numerical Approach for Modeling the Macroscopic Viscoelastic Behavior of Fiber-Reinforced Composites Using a Representative Volume Element
Author
Gort, Nicolas; Zhilyaev, Igor; Brauner, Christian  VIAFID ORCID Logo 
First page
6724
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724273714
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.