Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The flat-joint model, which constructs round particles as polygons, can suppress rotation after breakage between particles and simulate more larger compression and tension ratios than the linear parallel-bond model. The flat-joint contact model was chosen for this study to calibrate the rock for 3D experiments. In the unit experiments, the triaxial unit was loaded with flexible boundaries, and the influence of each microscopic parameter on the significance magnitude of the macroscopic parameters (modulus of elasticity E, Poisson’s ratio ν, uniaxial compressive strength UCS, crack initiation strength σci, internal friction angle φ and uniaxial tensile strength TS) was analysed by ANOVA (Analysis of Variance) in an orthogonal experimental design. Among them, Eƒ, kƒ has a significant effect on E; Cƒ and kƒ have a significant effect on ν; Cƒ, σƒ and kƒ have a significant effect on UCS; Cƒ; σƒ and Eƒ have a significant effect on TS; Rsd has a significant effect on σci; and φf, Eƒ, kƒ, μƒ, and σƒ have a significant effect on φ. Regressions were then carried out to establish the equations for calculating the macroscopic parameters of the rock material so that the three-dimensional microscopic parameters of the PFC can be quantitatively analysed and calculated. The correctness of the establishment of the macroscopic equations was verified by comparing the numerical and damage patterns of uniaxial compression, Brazilian splitting, and triaxial experiments with those of numerical simulation units in the chamber.

Details

Title
A Quantitative Study of Micro and Macro Mechanical Parameters Based on the PFC3D Flat-Joint Model
Author
You-Liang, Chen 1 ; Yun-Gui Pan 1 ; Du, Xi 1 ; Qi-Jian, Chen 1 ; Shao-Ming Liao 2 ; Zhang, Ning 1 ; Su-Ran, Wang 1 ; Peng, Bin 1 

 Department of Civil Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Yangpu District, Shanghai 200093, China 
 Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China 
First page
6790
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724274653
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.