Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A series of 5′-phosphorylated (dialkyl phosphates, diaryl phosphates, phosphoramidates, H-phosphonates, phosphates) 1,2,3-triazolyl nucleoside analogues in which the 1,2,3-triazole-4-yl-β-D-ribofuranose fragment is attached via a methylene group or a butylene chain to the N-1 atom of the heterocycle moiety (uracil or quinazoline-2,4-dione) was synthesized. All compounds were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1). Antiviral assays revealed three compounds, 13b, 14b, and 17a, which showed moderate activity against influenza virus A (H1N1) with IC50 values of 17.9 μM, 51 μM, and 25 μM, respectively. In the first two compounds, the quinazoline-2,4-dione moiety is attached via a methylene or a butylene linker, respectively, to the 1,2,3-triazole-4-yl-β-D-ribofuranosyl fragment possessing a 5′-diphenyl phosphate substituent. In compound 17a, the uracil moiety is attached via the methylene unit to the 1,2,3-triazole-4-yl-β-D-ribofuranosyl fragment possessing a 5′-(phenyl methoxy-L-alaninyl)phosphate substituent. The remaining compounds appeared to be inactive against influenza virus A/PR/8/34/(H1N1). The results of molecular docking simulations indirectly confirmed the literature data that the inhibition of viral replication is carried out not by nucleoside analogues themselves, but by their 5′-triphosphate derivatives.

Details

Title
The First 5′-Phosphorylated 1,2,3-Triazolyl Nucleoside Analogues with Uracil and Quinazoline-2,4-Dione Moieties: A Synthesis and Antiviral Evaluation
Author
Tatarinov, Dmitry A 1 ; Garifullin, Bulat F 1 ; Belenok, Mayya G 1   VIAFID ORCID Logo  ; Andreeva, Olga V 1 ; Irina Yu Strobykina 1 ; Shepelina, Anna V 2 ; Zarubaev, Vladimir V 3   VIAFID ORCID Logo  ; Slita, Alexander V 3 ; Volobueva, Alexandrina S 3 ; Saifina, Liliya F 1 ; Shulaeva, Marina M 1 ; Semenov, Vyacheslav E 1   VIAFID ORCID Logo  ; Kataev, Vladimir E 1 

 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia 
 Department of Organic and Medicine Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia 
 Pasteur Institute of Epidemiology and Microbiology, Mira Str., 14, 197101 Saint Petersburg, Russia 
First page
6214
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724276910
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.