Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Stains and glaze are effective procedures for achieving an aesthetic smoothness on indirect restorations. Thus, the effect of surface-etching treatments previous to the stain layer and the glaze application on the occlusal and antagonist wear of a hybrid ceramic were evaluated against different antagonists. Disc-shaped samples were prepared from polymer-infiltrated ceramic network (PICN) blocks. The specimens were divided into eight groups, according to the surface-etching treatment and glaze application: P (polished specimens); PG (polishing plus glaze); E (hydrofluoric acid etching plus stain); EG (acid etching plus stain plus glaze); A (aluminum oxide sandblasting plus stain); AG (sandblasting plus stain plus glaze); S (self-etching primer plus stain); SG (self-etching primer plus stain plus glaze). Half of the samples were subjected to a wear simulation with a steatite antagonist, and the other half was tested using a PICN antagonist. The test parameters were: 15 N, 1.7 Hz, 6 mm of horizontal sliding, 5000 cycles. The discs and the antagonists’ masses were measured before and after the wear tests. The average roughness and spacing defects were evaluated. The etching treatment affected the surface and antagonist mass loss when tested against steatite. AG showed the highest mass loss. This influence was not detected when using the PICN antagonist. The glaze application after staining ensures a smoother surface and avoids antagonist wear.

Details

Title
Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear
Author
Manassés Tercio Vieira Grangeiro  VIAFID ORCID Logo  ; Camila da Silva Rodrigues; Natália Rivoli Rossi; Jadson Mathyas Domingos da Silva  VIAFID ORCID Logo  ; de Carvalho Ramos, Nathalia  VIAFID ORCID Logo  ; João Paulo Mendes Tribst  VIAFID ORCID Logo  ; Lilian Costa Anami; Bottino, Marco Antonio
First page
6870
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724277479
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.