Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We present a detailed study of the field-dependent specific heat of the bimetallic ferromagnetically coupled chain compound MnNi(NO2)4(en)2, en = ethylenediamine. For this material, which in zero field orders antiferromagnetically below TN=2.45 K, small fields suppress magnetic order. Instead, in such fields, a double-peak-like structure in the temperature dependence of the specific heat is observed. We attribute this behavior to the existence of an acoustic and an optical mode in the spin-wave dispersion as a result of the existence of two different spins per unit cell. We compare our experimental data to numerical results for the specific heat obtained by exact diagonalization and Quantum Monte Carlo simulations for the alternating spin-chain model, using parameters that have been derived from the high-temperature behavior of the magnetic susceptibility. The interchain coupling is included in the numerical treatment at the mean-field level. We observe remarkable agreement between experiment and theory, including the ordering transition, using previously determined parameters. Furthermore, the observed strong effect of an applied magnetic field on the ordered state of MnNi(NO2)4(en)2 promises interesting magnetocaloric properties.

Details

Title
Numerical Interchain Mean-Field Theory for the Specific Heat of the Bimetallic Ferromagnetically Coupled Chain Compound MnNi(NO2)4(en)2 (en = Ethylenediamine)
Author
Honecker, Andreas 1   VIAFID ORCID Logo  ; Brenig, Wolfram 2 ; Tiwari, Maheshwor 1 ; Feyerherm, Ralf 3 ; Bleckmann, Matthias 4 ; Süllow, Stefan 5 

 Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, 95302 Cergy-Pontoise, France 
 Institut für Theoretische Physik, TU Braunschweig, 38106 Braunschweig, Germany 
 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany 
 Institut für Physik der Kondensierten Materie, TU Braunschweig, 38106 Braunschweig, Germany; Wehrwissenschaftliches Institut für Werk- und Betriebsstoffe (WIWeB), 85435 Erding, Germany 
 Institut für Physik der Kondensierten Materie, TU Braunschweig, 38106 Braunschweig, Germany 
First page
6546
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724282698
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.