Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Detecting buildings, segmenting building footprints, and extracting building edges from high-resolution remote sensing images are vital in applications such as urban planning, change detection, smart cities, and map-making and updating. The tasks of building detection, footprint segmentation, and edge extraction affect each other to a certain extent. However, most previous works have focused on one of these three tasks and have lacked a multitask learning framework that can simultaneously solve the tasks of building detection, footprint segmentation and edge extraction, making it difficult to obtain smooth and complete buildings. This study proposes a novel multiscale and multitask deep learning framework to consider the dependencies among building detection, footprint segmentation, and edge extraction while completing all three tasks. In addition, a multitask feature fusion module is introduced into the deep learning framework to increase the robustness of feature extraction. A multitask loss function is also introduced to balance the training losses among the various tasks to obtain the best training results. Finally, the proposed method is applied to open-source building datasets and large-scale high-resolution remote sensing images and compared with other advanced building extraction methods. To verify the effectiveness of multitask learning, the performance of multitask learning and single-task training is compared in ablation experiments. The experimental results show that the proposed method has certain advantages over other methods and that multitask learning can effectively improve single-task performance.

Details

Title
A Multiscale and Multitask Deep Learning Framework for Automatic Building Extraction
Author
Yin, Jichong 1   VIAFID ORCID Logo  ; Wu, Fang 1 ; Qiu, Yue 1   VIAFID ORCID Logo  ; Li, Anping 2   VIAFID ORCID Logo  ; Liu, Chengyi 1 ; Gong, Xianyong 1   VIAFID ORCID Logo 

 Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China 
 78098 Troops, Chengdu 610000, China 
First page
4744
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724300205
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.