Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Remote sensing change detection (CD) identifies changes in each pixel of certain classes of interest from a set of aligned image pairs. It is challenging to accurately identify natural changes in feature categories due to unstructured and temporal changes. This research proposed an effective bi-temporal remote sensing CD comprising an encoder that could extract multiscale features, a decoder that focused on semantic alignment between temporal features, and a classification head. In the decoder, we constructed a new convolutional attention structure based on pre-generation of depthwise-separable change-salient maps (PDACN) that could reduce the attention of the network on unchanged regions and thus reduce the potential pseudo-variation in the data sources caused by semantic differences in illumination and subtle alignment differences. To demonstrate the effectiveness of the PDA attention structure, we designed a lightweight network structure for encoders under both convolution-based and transformer architectures. The experiments were conducted on a single-building CD dataset (LEVIR-CD) and a more complex multivariate change type dataset (SYSU-CD). The results showed that our PDA attention structure generated more discriminative change variance information while the entire network model obtained the best performance results with the same level of network model parameters in the transformer architecture. For LEVIR-CD, we achieved an intersection over union (IoU) of 0.8492 and an F1 score of 0.9185. For SYSU-CD, we obtained an IoU of 0.7028 and an F1 score of 0.8255. The experimental results showed that the method proposed in this paper was superior to some current state-of-the-art CD methods.

Details

Title
Remote Sensing Image-Change Detection with Pre-Generation of Depthwise-Separable Change-Salient Maps
Author
Li, Bin 1 ; Wang, Guanghui 2 ; Zhang, Tao 3   VIAFID ORCID Logo  ; Yang, Huachao 1 ; Zhang, Shubi 1 

 School of Environmental and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China 
 School of Environmental and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, Beijing 100048, China 
 Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, Beijing 100048, China 
First page
4972
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724300247
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.