Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Combined sewer overflow pollution has gradually become the limiting factor for the further improvement of river water quality during rain events. Setting up a comprehensive regulation method based on synchronous monitoring is essential for combined sewer overflow management. However, current studies mainly focus on single monitoring and lack a correlation between control objectives and control effects. This study establishes a new aspect of a comprehensive regulation and control method based on overflow characteristic analysis, a calculation model, and control target determination. Through synchronous monitoring of the pipe network, the sewage treatment plant, and the river course in the Liangshui River basin of China, rainfall thresholds of outlets in a combined pipe network, pre-treatment overflow, and simple-treatment overflow were 14, 9, and 16 mm, respectively, and the overflow volume was positively correlated with the rainfall. The COD (chemical oxygen demand) concentration from the pre-treatment overflow was much higher than that from the combined pipe network, and the EMC (event mean concentration) in heavy rain was higher than in rainstorms. The shortest time exceeding the water quality by overflow pollution was 1 h, and the longest time was more than 7 days. Overflow load proportions of the three links were 43.4%, 32.8%, and 23.8%, accounting for 66.3% of the total pollutant load of the river, and the best scheme of input–output ratio was to regulate the first three outlets of overflow load. Our results provide comprehensive guidance and a systematic approach for the monitoring and control of combined sewer overflow.

Details

Title
Research on the Comprehensive Regulation Method of Combined Sewer Overflow Based on Synchronous Monitoring—A Case Study
Author
Yu, Lei 1 ; Yan, Yulin 1   VIAFID ORCID Logo  ; Pan, Xingyao 1 ; Yang, Simin 1 ; Liu, Jiaming 2 ; Yang, Moyuan 1   VIAFID ORCID Logo  ; Meng, Qingyi 1 

 Beijing Water Science and Technology Institute, Beijing 100048, China; Beijing Unconventional Water Resources and Water Saving Engineering Technology Research Center, Beijing 100048, China 
 Beijing Water Science and Technology Institute, Beijing 100048, China 
First page
3067
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724300621
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.