Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land use segmentation is a fundamental yet challenging task in remote sensing. Most current methods mainly take images as input and sometimes cannot achieve satisfactory results due to limited information. Inspired by the inherent relations between land cover and land use, we investigate land use segmentation using additional land cover data. The topological relations among land cover objects are beneficial for bridging the semantic gap between land cover and land use. Specifically, these relations are usually depicted by a geo-object-based graph structure. Deep convolutional neural networks (CNNs) are capable of extracting local patterns but fail to efficiently explore topological relations. In contrast, contextual relations among objects can be easily captured by graph convolutional networks (GCNs). In this study, we integrated CNNs and GCNs and proposed the CNN-enhanced HEterogeneous Graph Convolutional Network (CHeGCN) to incorporate local spectral-spatial features and long-range dependencies. We represent topological relations by heterogeneous graphs which are constructed with images and land cover data. Afterwards, we employed GCNs to build topological relations by graph reasoning. Finally, we fused CNN and GCN features to accomplish the inference from land cover to land use. Compared with other homogeneous graph-based models, the land cover data provide more sufficient information for graph reasoning. The proposed method can achieve the transformation from land cover to land use. Extensive experiments showed the competitive performance of CHeGCN and demonstrated the positive effects of land cover data. On the IoU metric over two datasets, CHeGCN outperforms CNNs and GCNs by nearly 3.5% and 5%, respectively. In contrast to homogeneous graphs, heterogeneous graphs have an IoU improvement of approximately 2.5% in the ablation experiments. Furthermore, the generated visualizations help explore the underlying mechanism of CHeGCN. It is worth noting that CHeGCN can be easily degenerated to scenarios where no land cover information is available and achieves satisfactory performance.

Details

Title
CNN-Enhanced Heterogeneous Graph Convolutional Network: Inferring Land Use from Land Cover with a Case Study of Park Segmentation
Author
Liu, Zhi-Qiang 1   VIAFID ORCID Logo  ; Tang, Ping 2 ; Zhang, Weixiong 1   VIAFID ORCID Logo  ; Zhang, Zheng 2   VIAFID ORCID Logo 

 Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China 
 Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China 
First page
5027
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724304444
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.