Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate land use land cover (LULC) classification is vital for the sustainable management of natural resources and to learn how the landscape is changing due to climate. For accurate and efficient LULC classification, high-quality datasets and robust classification methods are required. With the increasing availability of satellite data, geospatial analysis tools, and classification methods, it is essential to systematically assess the performance of different combinations of satellite data and classification methods to help select the best approach for LULC classification. Therefore, this study aims to evaluate the LULC classification performance of two commonly used platforms (i.e., ArcGIS Pro and Google Earth Engine) with different satellite datasets (i.e., Landsat, Sentinel, and Planet) through a case study for the city of Charlottetown in Canada. Specifically, three classifiers in ArcGIS Pro, including support vector machine (SVM), maximum likelihood (ML), and random forest/random tree (RF/RT), are utilized to develop LULC maps over the period of 2017–2021. Whereas four classifiers in Google Earth Engine, including SVM, RF/RT, minimum distance (MD), and classification and regression tree (CART), are used to develop LULC maps for the same period. To identify the most efficient and accurate classifier, the overall accuracy and kappa coefficient for each classifier is calculated throughout the study period for all combinations of satellite data, classification platforms, and methods. Change detection is then conducted using the best classifier to quantify the LULC changes over the study period. Results show that the SVM classifier in both ArcGIS Pro and Google Earth Engine presents the best performance compared to other classifiers. In particular, the SVM in ArcGIS Pro shows an overall accuracy of 89% with Landsat, 91% with Sentinel, and 94% with Planet. Similarly, in Google Earth Engine, the SVM shows an accuracy of 87% with Landsat 8 and 92% with Sentinel 2. Furthermore, change detection results show that 13.80% and 14.10% of forest areas have been turned into bare land and urban class, respectively, and 3.90% of the land has been converted into the urban area from 2017 to 2021, suggesting the intensive urbanization. The results of this study will provide the scientific basis for selecting the remote sensing classifier and satellite imagery to develop accurate LULC maps.

Details

Title
Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques
Author
Basheer, Sana 1 ; Wang, Xiuquan 1   VIAFID ORCID Logo  ; Farooque, Aitazaz A 1 ; Rana Ali Nawaz 1 ; Liu, Kai 2   VIAFID ORCID Logo  ; Adekanmbi, Toyin 1   VIAFID ORCID Logo  ; Liu, Suqi 3 

 Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St. Peter’s Bay, PE C0A 2A0, Canada; School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada 
 School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada 
 Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St. Peter’s Bay, PE C0A 2A0, Canada; Department of Agriculture and Land, Government of Prince Edward Island, Charlottetown, PE C1A 4N6, Canada 
First page
4978
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724308246
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.