Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The implementation of building retrofitting processes targeting higher energy efficiency is greatly influenced by the investor’s expectations regarding the return on investment. The baseline of this work is the assumption that it is possible to improve the predictability of the post-retrofit scenario, both in energy and financial terms, using data gathered on how a building is being used by its occupants. The proposed approach relies on simulation to estimate the impact of available energy-efficient solutions on future energy consumption, using actual usage data. Data on building usage are collected by a wireless sensor network, installed in the building for a minimum period that is established by the methodology. The energy simulation of several alternative retrofit scenarios is then the basis for the decision support process to help the investor directing the financial resources, based on both tangible and intangible criteria. The overall process is supported by a software platform developed in the scope of the EnPROVE project. The platform includes building audit, energy consumption prediction, and decision support. The decision support follows a benefits, opportunities, costs, and risks (BOCR) analysis based on the analytic hierarchy process (AHP). The proposed methodology and platform were tested and validated in a real business case, also within the scope of the project, demonstrating the expected benefits of alternative retrofit solutions focusing on lighting and thermal comfort.

Details

Title
Simulation-Based Decision Support System for Energy Efficiency in Buildings Retrofitting
Author
Neves-Silva, Rui  VIAFID ORCID Logo  ; Camarinha-Matos, Luis M  VIAFID ORCID Logo 
First page
12216
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724319966
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.