It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A data driven method-based robot joint fault diagnosis method using deep residual neural network (DRNN) is proposed, where Resnet-based fault diagnosis method is introduced. The proposed method mainly deals with kinds of fault types, such as gain error, offset error and malfunction for both sensors and actuators, respectively. First, a deep residual network fault diagnosis model is derived by stacking small convolution cores and increasing the core size. meanwhile, the gaussian white noise is injected into the fault data set to verify the noise immunity for the proposed deep residual network. Furthermore, a simulation is conducted, where different fault diagnosis methods including support vector machine (SVM), artificial neural network (ANN), convolutional neural network (CNN), long-term memory network (LTMN) and deep residual neural network (DRNN) are compared, and the simulation results show the accuracy of fault diagnosis for robot system using DRNN is higher, meanwhile, DRNN needs less model training time. Visualization analysis proved the feasibility and effectiveness of the proposed method for robot joint sensor and actuator fault diagnosis using DRNN method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Science and Technology Beijing, Institute of School of Automation, Beijing, China (GRID:grid.69775.3a) (ISNI:0000 0004 0369 0705)
2 Foshan University, Institute of School of Mechatronic Engineering and Automation, Foshan, China (GRID:grid.443369.f) (ISNI:0000 0001 2331 8060)