Full Text

Turn on search term navigation

© 2022 Gilchrist et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10−9; OR = 0.51 [95% CI 0.40 − 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.

Details

Title
Genome-wide association study of leprosy in Malawi and Mali
Author
James J. Gilchrist https://orcid.org/0000-0003-2045-6788; Auckland, Kathryn; Parks, Tom; Mentzer, Alexander J; Goldblatt, Lily; Naranbhai, Vivek; Band, Gavin; Rockett, Kirk A; Toure, Ousmane B; Konate, Salimata; Sissoko, Sibiri; Djimdé, Abdoulaye A; Thera, Mahamadou A; Ogobara K. Doumbo † Deceased.; Sow, Samba; Floyd, Sian; Pönnighaus, Jörg M; Warndorff, David K; Crampin, Amelia C; Fine, Paul E M; Fairfax, Benjamin P; Hill, Adrian V S
First page
e1010312
Section
Research Article
Publication year
2022
Publication date
Sep 2022
Publisher
Public Library of Science
ISSN
15537366
e-ISSN
15537374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2725274073
Copyright
© 2022 Gilchrist et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.