Abstract

Accurate organ-at-risk (OAR) segmentation is critical to reduce radiotherapy complications. Consensus guidelines recommend delineating over 40 OARs in the head-and-neck (H&N). However, prohibitive labor costs cause most institutions to delineate a substantially smaller subset of OARs, neglecting the dose distributions of other OARs. Here, we present an automated and highly effective stratified OAR segmentation (SOARS) system using deep learning that precisely delineates a comprehensive set of 42 H&N OARs. We train SOARS using 176 patients from an internal institution and independently evaluate it on 1327 external patients across six different institutions. It consistently outperforms other state-of-the-art methods by at least 3–5% in Dice score for each institutional evaluation (up to 36% relative distance error reduction). Crucially, multi-user studies demonstrate that 98% of SOARS predictions need only minor or no revisions to achieve clinical acceptance (reducing workloads by 90%). Moreover, segmentation and dosimetric accuracy are within or smaller than the inter-user variation.

Accurate organ at risk (OAR) segmentation is critical to reduce the radiotherapy post-treatment complications. Here, the authors develop an automated OAR segmentation system to delineate a comprehensive set of 42 H&N OARs.

Details

Title
Comprehensive and clinically accurate head and neck cancer organs-at-risk delineation on a multi-institutional study
Author
Ye, Xianghua 1 ; Guo, Dazhou 2 ; Ge, Jia 1 ; Yan, Senxiang 1 ; Xin, Yi 3 ; Song, Yuchen 1 ; Yan, Yongheng 1 ; Huang, Bing-shen 4 ; Hung, Tsung-Min 4 ; Zhu, Zhuotun 5   VIAFID ORCID Logo  ; Peng, Ling 6   VIAFID ORCID Logo  ; Ren, Yanping 7 ; Liu, Rui 8 ; Zhang, Gong 9 ; Mao, Mengyuan 10 ; Chen, Xiaohua 11 ; Lu, Zhongjie 1 ; Li, Wenxiang 1 ; Chen, Yuzhen 4 ; Huang, Lingyun 12 ; Xiao, Jing 12   VIAFID ORCID Logo  ; Harrison, Adam P. 13   VIAFID ORCID Logo  ; Lu, Le 2   VIAFID ORCID Logo  ; Lin, Chien-Yu 14 ; Jin, Dakai 2   VIAFID ORCID Logo  ; Ho, Tsung-Ying 15   VIAFID ORCID Logo 

 The First Affiliated Hospital, Zhejiang University, Department of Radiation Oncology, Hangzhou, China (GRID:grid.452661.2) (ISNI:0000 0004 1803 6319) 
 Alibaba Group, DAMO Academy, New York, USA (GRID:grid.481557.a) 
 Ping An Technology, Shenzhen, China (GRID:grid.452661.2) 
 Chang Gung Memorial Hospital, Department of Radiation Oncology, Linkou, Taiwan, ROC (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593) 
 Johns Hopkins University, Department of Computer Science, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Zhejiang Provincial People’s Hospital, Hangzhou, Department of Respiratory Disease, Zhejiang, China (GRID:grid.417401.7) (ISNI:0000 0004 1798 6507) 
 Huadong Hospital Affiliated to Fudan University, Department of Radiation Oncology, Shanghai, China (GRID:grid.413597.d) (ISNI:0000 0004 1757 8802) 
 The First Affiliated Hospital, Xi’an Jiaotong University, Department of Radiation Oncology, Xi’an, China (GRID:grid.452438.c) (ISNI:0000 0004 1760 8119) 
 People’s Hospital of Shanxi Province, Department of Radiation Oncology, Shanxi, China (GRID:grid.452438.c) 
10  Southern Medical University, Department of Radiation Oncology, Nanfang Hospital, Guangzhou, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471) 
11  The First Hospital of Lanzhou University, Department of Radiation Oncology, Lanzhou, China (GRID:grid.412643.6) (ISNI:0000 0004 1757 2902) 
12  Ping An Technology, Shenzhen, China (GRID:grid.413801.f) 
13  Q Bio Inc, San Carlos, USA (GRID:grid.413801.f) 
14  Chang Gung Memorial Hospital, Department of Radiation Oncology, Linkou, Taiwan, ROC (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593); Chang Gung Memorial Hospital and Chang Gung University, Particle Physics and Beam Delivery Core Laboratory, Taoyuan, Taiwan, ROC (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593) 
15  Chang Gung Memorial Hospital, Department of Nuclear Medicine, Linkou, Taiwan, ROC (GRID:grid.413801.f) (ISNI:0000 0001 0711 0593) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2725461317
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.