Abstract

In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO3, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO3 opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.

Antiferromagnets have attracted interest for spin-based information processing due to their resilience to stray magnetic fields and extremely rapid spin dynamics, however, long range spin wave transport has only been shown in one type of antiferromagnet thus far. Here, Das et al demonstrate long range spin wave transport in antiferromagnetic YFeO3.

Details

Title
Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3
Author
Das, Shubhankar 1 ; Ross, A. 2   VIAFID ORCID Logo  ; Ma, X. X. 3   VIAFID ORCID Logo  ; Becker, S. 1   VIAFID ORCID Logo  ; Schmitt, C. 1   VIAFID ORCID Logo  ; van Duijn, F. 4   VIAFID ORCID Logo  ; Galindez-Ruales, E. F. 1   VIAFID ORCID Logo  ; Fuhrmann, F. 1 ; Syskaki, M.-A. 1   VIAFID ORCID Logo  ; Ebels, U. 5 ; Baltz, V. 5   VIAFID ORCID Logo  ; Barra, A.-L. 6 ; Chen, H. Y. 3 ; Jakob, G. 7   VIAFID ORCID Logo  ; Cao, S. X. 3   VIAFID ORCID Logo  ; Sinova, J. 1 ; Gomonay, O. 1   VIAFID ORCID Logo  ; Lebrun, R. 2   VIAFID ORCID Logo  ; Kläui, M. 8 

 Johannes Gutenberg University Mainz, Institute of Physics, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111) 
 Thales, Université Paris-Saclay, Unité Mixte de Physique CNRS, Palaiseau, France (GRID:grid.410363.3) (ISNI:0000 0004 1754 8494) 
 Shanghai University, Department of Physics, Materials Genome Institute, International Center for Quantum and Molecular Structures, Shanghai, China (GRID:grid.39436.3b) (ISNI:0000 0001 2323 5732) 
 CNRS, CEA, Grenoble INP, SPINTEC, Univ. Grenoble Alpes, Grenoble, France (GRID:grid.457348.9) (ISNI:0000 0004 0630 1517); CNRS-UGA-UPS-INSA-EMFL, Laboratoire National des Champs Magnétiques Intenses, Grenoble, France (GRID:grid.462694.b) (ISNI:0000 0004 0369 2620) 
 CNRS, CEA, Grenoble INP, SPINTEC, Univ. Grenoble Alpes, Grenoble, France (GRID:grid.457348.9) (ISNI:0000 0004 0630 1517) 
 CNRS-UGA-UPS-INSA-EMFL, Laboratoire National des Champs Magnétiques Intenses, Grenoble, France (GRID:grid.462694.b) (ISNI:0000 0004 0369 2620) 
 Johannes Gutenberg University Mainz, Institute of Physics, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111); Graduate School of Excellence Materials Science in Mainz, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111) 
 Johannes Gutenberg University Mainz, Institute of Physics, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111); Graduate School of Excellence Materials Science in Mainz, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111); Norwegian University of Science and Technology, Center for Quantum Spintronics, Trondheim, Norway (GRID:grid.5947.f) (ISNI:0000 0001 1516 2393) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2725463429
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.