It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing (χ(2) and χ(3)) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the χ(3) has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process (χ(4)) is synthesized by incorporating χ(2) and χ(3) processes in a single microcavity. The coherence of the synthetic χ(4) is verified by generating time-energy entangled visible-telecom photon pairs, which requires only one drive laser at the telecom waveband. The photon-pair generation rate from the synthetic process shows an estimated enhancement factor over 500 times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring functional photonic devices.
High-order optical nonlinearities are a key tool in photonics and quantum optics, but their use is hindered by materials’ small intrinsic high-order susceptibility. Here, the authors show how to realize high-order nonlinear processes by combining intrinsic low-order ones in a microcavity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); University of Science and Technology of China, CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639)