Full text

Turn on search term navigation

Copyright © 2022 Ze-Kai Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Industrial quality detection is one of the important fields in machine vision. Big data analysis, the Internet of Things, edge computing, and other technologies are widely used in industrial quality detection. Studying an industrial detection algorithm that can be organically combined with the Internet of Things and edge computing is imminent. Deep learning methods in industrial quality detection have been widely proposed recently. However, due to the particularity of industrial scenarios, the existing deep learning-based general object detection methods have shortcomings in industrial applications. This study designs two isomorphic industrial detection models to solve these problems: T-model and S-model. Both proposed models combine swin-transformer with convolution in the backbone and design a residual fusion path. In the neck, this study designs a dual attention module to improve feature fusion. Second, this study presents a knowledge distiller based on the dual attention module to improve the detection accuracy of the lightweight S-model. According to the analysis of the experimental results on four public industrial defect detection datasets, the model in this study is more advantageous in industrial defect detection.

Details

Title
A Defect Detection Model for Industrial Products Based on Attention and Knowledge Distillation
Author
Zhang, Ze-Kai 1   VIAFID ORCID Logo  ; Ming-Le, Zhou 1   VIAFID ORCID Logo  ; Shao, Rui 1   VIAFID ORCID Logo  ; Li, Min 1   VIAFID ORCID Logo  ; Li, Gang 1   VIAFID ORCID Logo 

 Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China 
Editor
Wenming Cao
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2727493145
Copyright
Copyright © 2022 Ze-Kai Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/