Full text

Turn on search term navigation

Copyright © 2022 Xing-Zhao Jia et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Salient Object Detection (SOD) simulates the human visual perception in locating the most attractive objects in the images. Existing methods based on convolutional neural networks have proven to be highly effective for SOD. However, in some cases, these methods cannot satisfy the need of both accurately detecting intact objects and maintaining their boundary details. In this paper, we present a Multiresolution Boundary Enhancement Network (MRBENet) that exploits edge features to optimize the location and boundary fineness of salient objects. We incorporate a deeper convolutional layer into the backbone network to extract high-level semantic features and indicate the location of salient objects. Edge features of different resolutions are extracted by a U-shaped network. We designed a Feature Fusion Module (FFM) to fuse edge features and salient features. Feature Aggregation Module (FAM) based on spatial attention performs multiscale convolutions to enhance salient features. The FFM and FAM allow the model to accurately locate salient objects and enhance boundary fineness. Extensive experiments on six benchmark datasets demonstrate that the proposed method is highly effective and improves the accuracy of salient object detection compared with state-of-the-art methods.

Details

Title
MRBENet: A Multiresolution Boundary Enhancement Network for Salient Object Detection
Author
Xing-Zhao, Jia 1 ; Chang-Lei, DongYe 1   VIAFID ORCID Logo  ; Yan-Jun, Peng 1 ; Wen-Xiu Zhao 1 ; Tian-De, Liu 1 

 College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China 
Editor
Vinh Truong Hoang
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2727493235
Copyright
Copyright © 2022 Xing-Zhao Jia et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/