Full text

Turn on search term navigation

Copyright © 2022 Suresh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Collaborative filtering (CF) techniques are used in recommender systems to provide users with specialised recommendations on social websites and in e-commerce. But they suffer from sparsity and cold start problems (CSP) and fail to interpret why they recommend a new item. A novel deep ranking weighted multihash recommender (DRWMR) system is designed to suppress sparsity and CSP. The proposed DRWMR system contains two stages: the neighbours’ formation and recommendation phases. Initially, the data is fed to the deep convolutional neural network (CNN). The significant features are extracted from CNN. The CNN contains an additional layer; the hash code is generated by minimising pairwise ranking loss and classification loss. Therefore, a weight is assigned to different hash tables and hash bits for a recommendation. Then, the similarity between users is obtained based on the weighted hammering distance; the similarity between users helps to form the neighbourhood for the active user. Finally, the rating for unknown items can be obtained by taking the weighted average rating of the neighbourhood, and a list of the top n items can be produced. The effectiveness and accuracy of the proposed DRWMR system are tested on the MovieLens 100 K dataset and compared with the existing methods. Based on the evaluation results, the proposed DRWMR system gives precision (0.16), the root mean squared error (RMSE) of 0.73 and the recall (0.08), the mean absolute error (MAE) of 0.57, and the F − 1 measure (0.101).

Details

Title
A Deep Ranking Weighted Multihashing Recommender System for Item Recommendation
Author
Kumar, Suresh 1   VIAFID ORCID Logo  ; Singh, Jyoti Prakash 1   VIAFID ORCID Logo  ; Jain, Vinay Kumar 2   VIAFID ORCID Logo  ; Marahatta, Avinab 3   VIAFID ORCID Logo 

 Department of Computer Science and Engineering, NIT Patna, India 
 Department of Management (PG), MIT World Peace University, Pune, India 
 Center for Multidisciplinary Studies and Innovation (CeMuSI), Kathmandu, Nepal 
Editor
Akshi Kumar
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2727493325
Copyright
Copyright © 2022 Suresh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/