Full text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

To provide an automatic method for segmentation and diameter measurement of type B aortic dissection (TBAD).

Materials and Methods

Aortic computed tomography angiographic images from 139 patients with TBAD were consecutively collected. We implemented a deep learning method based on a three-dimensional (3D) deep convolutional neural (CNN) network, which realizes automatic segmentation and measurement of the entire aorta (EA), true lumen (TL), and false lumen (FL). The accuracy, stability, and measurement time were compared between deep learning and manual methods. The intra- and inter-observer reproducibility of the manual method was also evaluated.

Results

The mean dice coefficient scores were 0.958, 0.961, and 0.932 for EA, TL, and FL, respectively. There was a linear relationship between the reference standard and measurement by the manual and deep learning method (r = 0.964 and 0.991, respectively). The average measurement error of the deep learning method was less than that of the manual method (EA, 1.64% vs. 4.13%; TL, 2.46% vs. 11.67%; FL, 2.50% vs. 8.02%). Bland-Altman plots revealed that the deviations of the diameters between the deep learning method and the reference standard were −0.042 mm (−3.412 to 3.330 mm), −0.376 mm (−3.328 to 2.577 mm), and 0.026 mm (−3.040 to 3.092 mm) for EA, TL, and FL, respectively. For the manual method, the corresponding deviations were −0.166 mm (−1.419 to 1.086 mm), −0.050 mm (−0.970 to 1.070 mm), and −0.085 mm (−1.010 to 0.084 mm). Intra- and inter-observer differences were found in measurements with the manual method, but not with the deep learning method. The measurement time with the deep learning method was markedly shorter than with the manual method (21.7 ± 1.1 vs. 82.5 ± 16.1 minutes, p

Conclusion

The performance of efficient segmentation and diameter measurement of TBADs based on the 3D deep CNN was both accurate and stable. This method is promising for evaluating aortic morphology automatically and alleviating the workload of radiologists in the near future.

Details

Title
A Three-Dimensional Deep Convolutional Neural Network for Automatic Segmentation and Diameter Measurement of Type B Aortic Dissection
Author
Yu, Yitong  VIAFID ORCID Logo  ; Lu, Bin  VIAFID ORCID Logo 
Pages
168-178
Section
Cardiovascular Imaging
Publication year
2021
Publication date
Feb 2021
Publisher
The Korean Society of Radiology
ISSN
12296929
e-ISSN
20058330
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728053672
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.