Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.

Details

Title
Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension
Author
Redel-Traub, Gabriel 1   VIAFID ORCID Logo  ; Sampson, Kevin J 2 ; Kass, Robert S 2 ; Bohnen, Michael S 3   VIAFID ORCID Logo 

 Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA 
 Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA 
 Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA 
First page
1341
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728434282
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.