Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to make full use of the advantages of welded stud and perfobond rib shear connectors, a new type of composite shear connector is proposed. Studs are welded to the perforated steel plate of the PBL connectors. Six specimens were designed and tested to investigate the shear behaviour of the composite connectors. The effects of the hole number, welded stud number, and end-bearing modes on the shear behaviour of the composite connectors were discussed. In addition, the composite connectors were compared with the conventional welded stud and perfobond rib connectors to analyse the difference in shear performance. The composite connectors’ shear behaviours are significantly better than those of welded stud connectors and PBL connectors. The experimental results show that increasing the number of welded studs and perforated holes and end-bearing concrete can significantly improve the shear performance of composite connectors. Secondly, a finite element model was established considering the nonlinearity of the structure and was validated based on the experimental results. Finally, the effects of reinforcement diameter, welded stud diameter, and concrete strength on the shear performance of composite connectors were analysed. The shear resistance increases as the penetrating rebar diameter, welded stud diameter, and concrete strength increase. Moreover, the overall damage level of the concrete can be significantly affected.

Details

Title
Research on the Shear Behaviour of Composite Shear Connectors
Author
Xue, Chengfeng 1 ; Zhou, Fan 2   VIAFID ORCID Logo  ; Wu, Fangwen 2 ; Liu, Laijun 2 ; He, Lanqing 2 ; Cui, Xuan 2 

 School of Civil Engineering, Xijing University, Xi’an 710123, China 
 School of Highway, Chang’an University, Xi’an 710064, China 
First page
1726
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728449568
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.