Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alcoholic beverages contaminated with scopolamine (SCP) are often employed for criminal purposes due to their sedative effect. The determination of the residual levels of SCP in body fluids (e.g., urine) can help to track possible victims of induced ingestions. Biological sample analysis usually requires a preconcentration step to enhance their detectability and to provide sample clean-up. Molecularly imprinted polymers (MIPs) in lieu of conventional solid sorbents represent an enhancement of selectivity, due to their specific recognition sites. Additionally, the adaptation of the solid-phase extraction (SPE) cartridge into a disposable pipette tip extraction (DPX) contributes to the miniaturization of the sample preparation step. Herein, an analytical method for the determination of SCP in synthetic urine samples via the integration of molecularly imprinted solid-phase extraction (MISPE) with DPX as a preconcentration step prior to capillary electrophoresis analysis (also known as MISPE-DPX-CE) is presented. The extraction and elution steps were optimized using a factorial design. Using the optimized conditions, a preconcentration factor of 20 was obtained, leading to a working range of 0.5–6 µM with LOD of 0.04 µM and repeatability of 6.4% (n = 7) and adequate recovery values (84 and 101%) The proposed MISPE-DPX-CE approach was successfully applied to selective extraction, preconcentration, and determination of SCP in synthetic urine samples.

Details

Title
A Molecularly Imprinted Polymer-Disposable Pipette Tip Extraction-Capillary Electrophoresis (MISPE-DPX-CE) Method for the Preconcentration and Determination of Scopolamine in Synthetic Urine Samples
Author
Weida Rodrigues Silva  VIAFID ORCID Logo  ; Michelle M A C Ribeiro; Eduardo Mathias Richter  VIAFID ORCID Logo  ; Batista, Alex D  VIAFID ORCID Logo  ; João Flávio da Silveira Petruci  VIAFID ORCID Logo 
First page
387
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728451940
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.