Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plant secondary succession is a very effective approach for the rejuvenation of degraded ecosystems. In order to comprehend alterations and driving mechanisms of soil bacterial communities under secondary succession of old-field and reveal their subsequent impacts on the decomposition and accumulation of soil organic carbon (SOC) and nitrogen (SON), we investigated changes in soil bacterial communities following ~160 years of old-field succession on the Loess Plateau of China through analyses of quantitative polymerase chain reaction (qPCR) and Illumina MiSeq DNA sequencing of 16S rRNA genes. Our results revealed that subsequent to secondary succession of old-field, soil bacterial abundance progressively increased, while bacterial richness and diversity significantly decreased. Principal component analysis and Bray–Curtis similarity index showed that bacterial community composition gradually shifted following old-field succession. Specifically, the relative abundances of Proteobacteria, Rokubacteria, and Verrucomicrobia progressively increased, while Actinobacteria and Firmicutes slightly decreased following old-field succession. The most enriched of Proteobacteria (e.g., Rhizobiales, Xanthobacteraceae, Gammaproteobacteria, Bradyrhizobium, Rhizobiaceae, and Mesorhizobiur) were found in a climax forest, while Chloroflexi and Gemmatimonadetes had the lowest relative abundances. Further, the most enriched members of Actinobacteria, including Geodermatophilaceae, Frankiales, Blastococcus, Micrococcales, Micrococcacea, Propionibacteriales, Nocardioidaceae, Nocardioide, and Streptomycetaceae, were exhibited in the farmland stage. Our results suggested that secondary succession of old-field greatly modified soil bacterial communities via the transformation of soil nutrients levels, altering plant biomass and soil physiochemical properties. Soil bacterial community composition was transformed from oligotrophic groups to copiotrophic Proteobacteria following old-field succession, which may promote SOC and SON accumulation through increasing the utilization of labile organic carbon (C) and nitrogen (N), while decreasing decomposition of recalcitrant organic C and N from the early- to late-successional stages.

Details

Title
Increased Soil Bacterial Abundance but Decreased Bacterial Diversity and Shifted Bacterial Community Composition Following Secondary Succession of Old-Field
Author
Yang, Wen 1 ; Cai, Xinwen 1 ; Wang, Yaqi 1 ; Diao, Longfei 1 ; Lu, Xia 2 ; An, Shuqing 2 ; Luo, Yiqi 3 ; Cheng, Xiaoli 4 

 College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China 
 School of Life Sciences, Nanjing University, Nanjing 210023, China 
 School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA 
 School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China 
First page
1628
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728469620
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.