Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tetracycline-inducible systems are widely used control elements for mammalian gene expression. Despite multiple iterations to improve inducibility, their use is still compromised by basal promoter activity in the absence of tetracyclines. In a mammalian system, we previously showed that the introduction of the G72V mutation in the rtTA-M2 tetracycline activator lowers the basal level expression and increases the fold-induction of multiple genetic elements in a long chimeric antigen receptor construct. In this study, we confirmed that the G72V mutation was effective in minimising background expression in the absence of an inducer, resulting in an increase in fold-expression. Loss of responsiveness due to the G72V mutation was compensated through the incorporation of four sensitivity enhancing (SE) mutations, without compromising promoter tightness. However, SE mutations alone (without G72V) led to undesirable leakiness. Although cryptic splice site removal from rtTA did not alter the inducible control of the luciferase reporter gene in this simplified vector system, this is still recommended as a precaution in more complex multi-gene elements that contain rtTA. The optimized expression construct containing G72V and SE mutations currently provides the best improvement of fold-induction mediated by the rtTA-M2 activator in a mammalian system.

Details

Title
Noise-Reduction and Sensitivity-Enhancement of a Sleeping Beauty-Based Tet-On System
Author
Saunderson, Sarah C 1 ; SM Ali Hosseini-Rad 2 ; McLellan, Alexander D 1   VIAFID ORCID Logo 

 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand 
 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; Centre of Excellence in Immunology and Immune-Mediated Diseases, University of Chulalongkorn, Bangkok 10330, Thailand 
First page
1679
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728476950
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.