Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To date, neural efficiency, an ability to economically utilize mental resources, has not been investigated after cognitive training. The purpose of this study was to provide customized cognitive training and confirm its effect on neural efficiency by investigating prefrontal cortex (PFC) activity using functional near-infrared spectroscopy (fNIRS). Before training, a prediction algorithm based on the PFC activity with logistic regression was used to predict the customized difficulty level with 86% accuracy by collecting data when subjects performed four kinds of cognitive tasks. In the next step, the intervention study was designed using one pre-posttest group. Thirteen healthy adults participated in the virtual reality (VR)-based spatial cognitive training, which was conducted four times a week for 30 min for three weeks with customized difficulty levels for each session. To measure its effect, the trail-making test (TMT) and hemodynamic responses were measured for executive function and PFC activity. During the training, VR-based spatial cognitive performance was improved, and hemodynamic values were gradually increased as the training sessions progressed. In addition, after the training, the performance on the trail-making task (TMT) demonstrated a statistically significant improvement, and there was a statistically significant decrease in the PFC activity. The improved performance on the TMT coupled with the decreased PFC activity could be regarded as training-induced neural efficiency. These results suggested that personalized cognitive training could be effective in improving executive function and neural efficiency.

Details

Title
Effects of Personalized Cognitive Training with the Machine Learning Algorithm on Neural Efficiency in Healthy Younger Adults
Author
Yu Jin Jeun 1 ; Nam, Yunyoung 2   VIAFID ORCID Logo  ; Lee, Seong A 3 ; Park, Jin-Hyuck 3   VIAFID ORCID Logo 

 Department of ICT Convergence, Graduate School of Soonchunhyang University, Asan 31538, Korea 
 Department of Computer Science, Engineering Soonchunhyang University, Asan 31538, Korea 
 Department of Occupational Therapy, Soonchunhyang University, Asan 31538, Korea 
First page
13044
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728482204
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.