Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

In the honeybee Apis mellifera, apidermin 2 (APD 2) is known as a cuticular protein. However, the antimicrobial properties of A. mellifera APD 2 (AmAPD 2) have not been characterized. Herein, we provide the first demonstration that AmAPD 2 exhibits antibacterial and antifungal activities. We found that AmAPD 2 induced structural damage by binding to bacterial and fungal cell walls, indicating that AmAPD 2 has the antimicrobial action of an antimicrobial peptide. Our findings demonstrate a novel role of AmAPD 2 as an antimicrobial agent in honeybees.

Abstract

Apidermins (APDs) are known as structural cuticular proteins in insects, but their additional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2 (AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees, the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2 gene showed high expression and responded strongly to microbial challenge. Using a recombinant AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD 2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall molecules. This binding action ultimately induced structural damage to microbial cell walls, which resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2 in honeybees.

Details

Title
Antimicrobial Activity of Apidermin 2 from the Honeybee Apis mellifera
Author
Bo-Yeon, Kim 1 ; Yun-Hui, Kim 1 ; Yong-Soo, Choi 2 ; Man-Young, Lee 2 ; Lee, Kwang-Sik 1 ; Byung-Rae, Jin 1 

 College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea 
 Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea 
First page
958
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728485813
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.