Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Development of efficient approaches for the production of medically important nucleosides is a highly relevant challenge for biotechnology. In particular, cascade synthesis of arabinosides would allow relatively easy production of various cytostatic and antiviral drugs. However, the biocatalyst necessary for this approach, ribokinase from Escherichia coli (EcoRK), has a very low activity towards D-arabinose, making the synthesis using the state-of-art native enzyme technologically unfeasible. Here, we report the results of our enzyme design project, dedicated to engineering a mutant form of EcoRK with elevated activity towards arabinose. Analysis of the active site structure has allowed us to hypothesize the reasons behind the low EcoRK activity towards arabinose and select feasible mutations. Enzyme assay and kinetic studies have shown that the A98G mutation has caused a large 15-fold increase in kcat and 1.5-fold decrease in KM for arabinose phosphorylation. As a proof of concept, we have performed the cascade synthesis of 2-chloroadenine arabinoside utilizing the A98G mutant with 10-fold lower amount of enzyme compared to the wild type without any loss of synthesis efficiency. Our results are valuable both for the development of new technologies of synthesis of modified nucleosides and providing insight into the structural reasons behind EcoRK substrate specificity.

Details

Title
Rational Mutagenesis in the Lid Domain of Ribokinase from E. coli Results in an Order of Magnitude Increase in Activity towards D-arabinose
Author
Zayats, Evgeniy A  VIAFID ORCID Logo  ; Fateev, Ilya V  VIAFID ORCID Logo  ; Kostromina, Maria A; Abramchik, Yulia A  VIAFID ORCID Logo  ; Lykoshin, Dmitry D  VIAFID ORCID Logo  ; Yurovskaya, Daria O; Timofeev, Vladimir I; Maria Ya Berzina  VIAFID ORCID Logo  ; Eletskaya, Barbara Z; Konstantinova, Irina D; Esipov, Roman S  VIAFID ORCID Logo 
First page
12540
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728492657
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.