Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lappaconitine (LA) is a C-18 diterpene alkaloid isolated from Aconitum sinomontanum Nakai that has been shown to relieve mild to moderate discomfort. Various researchers have tried to explain the underlying mechanism of LA’s effects on chronic pain. This article uses metabolomics technology to investigate the metabolite alterations in the dorsal root ganglion (DRG) when lappaconitine hydrobromide (LAH) was injected in an inflammatory pain model, to explain the molecular mechanism of its analgesia from a metabolomics perspective. The pain model used in this study was a complete Freund’s adjuvant (CFA)-induced inflammatory pain model in rats. There were two treatment groups receiving different dosages of LAH (4 mg/kg LAH and 8 mg/kg LAH). The analgesic mechanism of LAH was investigated with an analgesic behavioral test, tissue sections, and metabolomics. The results of the analgesic behavioral experiment showed that both 4 mg/kg LAH and 8 mg/kg LAH could significantly improve the paw withdrawal latency (PWL) of rats. The tissue section results showed that LAH could reduce the inflammatory response and enlargement of the paw and ankle of rats and that there was no significant difference in the tissue sections of the DRG. The metabolomics results showed that retinol metabolism and glycerophospholipid metabolism in the CFA-induced inflammatory pain model were significantly affected and may exacerbate the inflammatory reactions and initiate persistent pain; in addition, the linoleic acid metabolism, arachidonic acid metabolism, and alanine, aspartate, and glutamate metabolism were also slightly affected. Among them, the alpha-linolenic acid metabolism was up-regulated after LAH treatment, while the retinol metabolism was down-regulated. These results suggest that LAH could effectively reduce inflammatory pain and might achieve this by regulating the lipid metabolism in the rat DRG.

Details

Title
A Metabolomic Study of the Analgesic Effect of Lappaconitine Hydrobromide (LAH) on Inflammatory Pain
Author
Xu, Li 1   VIAFID ORCID Logo  ; Wang, Xueqi 2 ; Li, Zhengdou 2 ; Mao, Ying 2 ; Liu, Zhao 3 ; Liu, Xiaoxiao 4 ; Zhu, Xinliang 1 ; Zhang, Ji 1 

 College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China 
 College of Life Science, Northwest Normal University, Lanzhou 730070, China 
 Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou 215006, China 
 College of Life Science, Northwest Normal University, Lanzhou 730070, China; Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China 
First page
923
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22181989
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728493864
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.