Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Usnic acid (UA) is one of the most abundant and common metabolites of lichens, known for its numerous pharmacological properties. Nevertheless, it presents some criticalities that severely limit its use in therapy: poor solubility in water and significant hepatotoxicity. Soluplus and Solutol HS15 and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) were employed to develop polymeric micelles (UA–PM). The chemical and physical properties of the system were characterized, including the size, homogeneity, zeta potential, critical micellar concentration (CMC), encapsulation efficiency (EE%), and in vitro release. The freeze-drying process was considered to prevent agglomeration and improve the stability of the formulation. The stability of the micelles and the freeze-dried product (UA–PML) was also evaluated. The anti-migratory activity of UA and UA–PM was evaluated in human neuroblastoma SH-SY5Y cells using the wound healing assay. Their effect on the activity of metalloproteinases (MMP)-2/9 involved in the migration process of cells was verified by gelatin zymography. The optimized UA–PM contained Soluplus, Solutol HS15, and TPGS in a 1:4:0.5 weight ratio and increased the aqueous solubility to about 150-fold solubilized, solubilizing 0.5 mg/mL of UA. UA–PM has a small size (45.39 ± 0.31 nm), a polydispersity index (PDI) of 0.26 ± 0.01, and an EE% of 82.13 ± 5.57%. The colloidal dispersion was stable only for 9 days at 4 °C, while the freeze-drying process improved the stability for up to 30 days. UA was released for a prolonged period during the in vitro release study. The in vitro cell-based experiments showed that UA–PM (0.2 µg/mL) inhibited SH-SY5Y cell migration and the gelatinolytic activity of MMP-2/9 in culture media, while free UA at the same concentration exerted no biological activity. This study demonstrates that polymeric micelles are an excellent formulation for UA to manifest inhibitory action on neuroblastoma cell migration.

Details

Title
Usnic Acid-Loaded Polymeric Micelles: An Optimal Migrastatic-Acting Formulation in Human SH-SY5Y Neuroblastoma Cells
Author
Vasarri, Marzia 1   VIAFID ORCID Logo  ; Ponti, Linda 2   VIAFID ORCID Logo  ; Donatella Degl’Innocenti 1   VIAFID ORCID Logo  ; Bergonzi, Maria Camilla 2   VIAFID ORCID Logo 

 Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy 
 Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy 
First page
1207
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728519193
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.