Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

(1) Background: Gastric cancer (GC) is the fourth leading cause of cancer death worldwide. Silver nanoparticles (Ag-NPs) have been increasingly used in the diagnosis and treatment of cancer due to their physicochemical properties. This study investigated the role of a kind of biosynthetic silver nanoparticle (b-Ag) in the development of GC, the enhancement of 5-fluorouracil (5F), and its mechanism. (2) Methods: X-ray, transmission electron microscopy (TEM), and UV absorbance were used to detect the characterizations of AgNPs. CCK8, Colony formation and a Transwell assay were performed to confirm the malignant behaviors of GC. DCFH-DA and DHE were used to detect intracellular reactive oxygen species (ROS). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of apoptosis-related genes. (3) Results: Compared with the chemosynthetic silver nanoparticles (c-Ag), b-Ag had a stronger cytokilling effect, and it had a better inhibition on the malignant phenotype of GC when combined with 5F. The b-Ag increased the expression of Bax and P53 while decreasing the expression of Bcl2. It also promoted the generation of intracellular ROS. (4) Conclusions: By promoting cell apoptosis and increasing intracellular ROS, b-Ag inhibited the development of GC and enhanced the inhibition of 5F on GC.

Details

Title
Biosynthetic Silver Nanoparticles Inhibit the Malignant Behavior of Gastric Cancer Cells and Enhance the Therapeutic Effect of 5-Fluorouracil by Promoting Intracellular ROS Generation and Apoptosis
Author
Yuan, Jingwen 1 ; Khan, Shahid Ullah 2 ; Luo, Jiajun 1 ; Jiang, Yue 1   VIAFID ORCID Logo  ; Yang, Yu 1 ; Yan, Junfeng 1 ; Tong, Qiang 1   VIAFID ORCID Logo 

 Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China 
 Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad 22080, Pakistan 
First page
2109
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728520024
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.