Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Water clarity (Secchi disk depth, SDD) provides a sensitive tool to examine the spatial pattern and historical trend in lakes’ trophic status. However, this metric has been insufficiently explored despite the availability of remotely-sensed data. Based on the published SDD datasets derived from Landsat images, we analyzed the spatial and inter-annual variations in water clarity and examined the impact of natural and anthropogenic factors on these trends at multiple scales, i.e., five lake regions, provinces, and watersheds. Lake clarity was lowest in Northeast (0.60 ± 0.09 m) and East China (1.23 ± 0.17 m) and highest in the Tibet Plateau (3.32 ± 0.38 m). Over the past 35 years, we found a significant trend of increased SDD in 18 (out of 32) provinces (only Yunnan province exhibited a significant decreasing trend) and in 77 (out of 155) watersheds (only 5 watersheds showed a significant decreasing trend). Lakes in eastern-northeastern China exhibited a higher probability of decreasing trend, while the trend was inverse for lakes in the Tibet-Qinghai region. The results of water clarity interannual change trends showed they were closely related to the spatial scale of analysis. At the watershed level, these trends were mainly driven by anthropogenic factors, with night-time brightness (13.84%), agricultural fertilizer use (11.17%), and wastewater (9.64%) being the most important. Natural factors (temperature, wind, and NDVI) explained about 18.2% of the SDD variance. Our findings for the SDD spatio-temporal trend provide valuable information for guiding water protection management policy-making and reinforcement in China.

Details

Title
Analysis of Spatio-Temporal Dynamics of Chinese Inland Water Clarity at Multiple Spatial Scales between 1984 and 2018
Author
Tao, Hui 1   VIAFID ORCID Logo  ; Song, Kaishan 2 ; Liu, Ge 3 ; Wang, Qiang 1 ; Wen, Zhidan 3   VIAFID ORCID Logo  ; Hou, Junbin 3 ; Shang, Yingxin 3 ; Li, Sijia 3 

 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 
 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Urban Research and Planning, Liaocheng University, Liaocheng 252000, China 
 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China 
First page
5091
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728525357
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.