Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Symmetry in nanomaterials is essential to know the behavior of their properties. In the present research, the photocatalytic properties of SnO2 and ZnO nanoparticles were compared for the degradation of the cationic dyes Methylene Blue (MB) and Rhodamine B (RB). The nanoparticles were obtained through a green synthesis process assisted by Randia echinocarpa extracts; they were then analyzed through Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) to characterize their structure. Transmission electron microscopy (TEM) was used to identify the morphology and disclose nanoparticle size, and the optical properties were studied through Ultraviolet–visible spectroscopy (UV–Vis). The results show that the synthesized SnO2 and ZnO nanomaterials have quasispherical morphologies with average sizes of 8–12 and 4–6 nm, cassiterite and wurtzite crystal phases, and band gap values of 3.5 and 3.8 eV, respectively. The photocatalytic activity yielded 100% degradation of the MB and RB dyes in 210 and 150 min, respectively. ZnO performed higher photocatalytic degradation of the cationic dyes than SnO2 due to a higher content of Randia echinocarpa extracts remaining after the green synthesis process.

Details

Title
Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes
Author
Chinchillas-Chinchillas, Manuel J 1   VIAFID ORCID Logo  ; Garrafa-Gálvez, Horacio E 1   VIAFID ORCID Logo  ; Orozco-Carmona, Victor M 2 ; Luque-Morales, Priscy A 3 

 Departamento de Ingeniería y Tecnología, Universidad Autónoma de Occidente (UAdeO), 81048 Guasave, Sinaloa, Mexico 
 Centro de Investigación en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chihuahua, Mexico 
 Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California (UABC), 22860 Ensenada, Baja California, Mexico 
First page
1970
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728527299
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.