Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The optimization of the ecological network structure in Nanping can provide a scientific reference for guaranteeing ecological safety in Southeast China. This study estimated ecosystem services in Nanping with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model based on land-use data from 2020 to 2025 simulated with the CLUE-S model under the natural development scenario and ecological protection scenario and then explored their trade-offs and synergies. The ecological network structure was, thereafter, optimized in terms of the eco-matrix, eco-corridors and nodes based on simulated land use and ecosystem services. The results suggested that the average habitat quality and total soil retention increased, while the average degradation index and total water yield decreased under the ecological protection scenario, indicating that the ecological environment quality tended to be improved. In addition, soil retention had significant synergies with habitat quality and water yield, and habitat quality had significant trade-offs with ecological degradation and water yield on the regional scale under two scenarios, while ecological degradation also showed significant trade-offs with soil retention and water yield. In addition, the results suggested that 11 additional ecological sources could be added, and the number of eco-corridors increased from 15 to 136; a total of 1019 ecological break points were restored, and 1481 stepping stone patches were deployed, which jointly made network circuitry, edge/node ratio and network connectivity reach 0.45, 1.86 and 0.64, respectively, indicating that optimization could effectively improve the structure and connectivity of the ecological network. These findings can provide a theoretical basis for improving the ecological network structure and ecological service functions in Nanping and other regions.

Details

Title
Optimization of the Ecological Network Structure Based on Scenario Simulation and Trade-Offs/Synergies among Ecosystem Services in Nanping
Author
Wang, Zixuan 1 ; Xiao, Ling 1 ; Yan, Haiming 2   VIAFID ORCID Logo  ; Yuanjing Qi 3 ; Qun’ou Jiang 3 

 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 
 Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China 
 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Soil and Water Conservation and Desertification Prevention, Beijing Forestry University, Beijing 100083, China 
First page
5245
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728528150
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.