Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature (TB) observations have long been utilized for snow depth (SD) estimation. However, the traditional approaches which are based on ‘point-to-point’ predictions ignore the spatial heterogeneity within a AMSR2 pixel and are limited by the coarse spatial resolution of the AMSR2 sensor. To solve these problems, a novel deep ‘area-to-point’ SD estimation model, based on a deep residual learning network by combining convolutional neural networks (CNN) and residual blocks, was proposed. The model utilizes all channels of AMSR2 TB data along with Moderate-resolution Imaging Spectroradiometer (MODIS) normalized difference snow index (NDSI) data and auxiliary geographic information. Taking the Qinghai-Tibet Plateau (QTP) as the study area, the SD with a spatial resolution of 0.005° over the 2019–2020 snow season is estimated, and the accuracy is validated by in situ SD observations from 116 stations. The results show that: (1) the proposed SD estimation model shows desirable accuracy as the root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and coefficient of determination (R2) of the proposed SD estimation method are 2.000 cm, 0.656 cm, −0.013 cm, and 0.847, respectively. (2) The SD estimation error is slightly larger in medium elevation or medium slope or grassland areas, and the RMSE is 2.247 cm, 3.084 cm, and 2.213 cm, respectively. (3) The proposed SD estimation method has the most satisfactory performance in low-elevation regions, and the RMSE is only 0.523 cm. The results indicate that through considering the spatial heterogeneity of snow cover and utilizing the high spatial resolution snow information presented by the MODIS snow cover product, the proposed model has good SD estimation accuracy, which is promising for application in other study regions.

Details

Title
Estimation of Snow Depth from AMSR2 and MODIS Data based on Deep Residual Learning Network
Author
De Xing 1 ; Hou, Jinliang 2 ; Huang, Chunlin 2   VIAFID ORCID Logo  ; Zhang, Weimin 1 

 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China 
 Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 
First page
5089
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728530468
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.