Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The commercialization and advancement of unmanned aerial vehicles (UAVs) have increased in the past decades for surveillance. UAVs use gimbal cameras and LIDAR technology for monitoring as they are resource-constrained devices that are composed of limited storage, battery power, and computing capacity. Thus, the UAV’s surveillance camera and LIDAR data must be analyzed, extracted, and stored efficiently. Video synopsis is an efficient methodology that deals with shifting foreground objects in time and domain space, thus creating a condensed video for analysis and storage. However, traditional video synopsis methodologies are not applicable for making an abnormal behavior synopsis (e.g., creating a synopsis only of the abnormal person carrying a revolver). To mitigate this problem, we proposed an early fusion-based video synopsis. There is a drastic difference between the proposed and the existing synopsis methods as it has several pressing characteristics. Initially, we fused the 2D camera and 3D LIDAR point cloud data; Secondly, we performed abnormal object detection using a customized detector on the merged data and finally extracted only the meaningful data for creating a synopsis. We demonstrated satisfactory results while fusing, constructing the synopsis, and detecting the abnormal object; we achieved an mAP of 85.97%.

Details

Title
DVS: A Drone Video Synopsis towards Storing and Analyzing Drone Surveillance Data in Smart Cities
Author
Ingle, Palash Yuvraj  VIAFID ORCID Logo  ; Kim, Yujun  VIAFID ORCID Logo  ; Young-Gab, Kim  VIAFID ORCID Logo 
First page
170
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20798954
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728532940
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.