Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We used ground-based ionosonde observations at Ganzi (31.2° N, 100.4° E) to validate the COSMIC measurement in the middle latitude region of China during low solar activity. First, eligible data pairs from two kinds of techniques were selected for the validation. Then, we investigated the consistency of the ionospheric parameters’ F layer peak density (NmF2) from selected data pairs at different local times in different seasons, and we also investigated the F layer peak height (hmF2). The correlation of the parameters (including NmF2 and hmF2) were good in general. The correlation coefficients of the NmF2 and hmF2 from all selected data pairs were 0.94 and 0.77, respectively. The correlation coefficients were higher in the daytime than those at night for both the NmF2 and hmF2. The correlation coefficients in different seasons were close to each other for both the NmF2 and hmF2. The NmF2 from the COSMIC tends to be overestimated during the whole day except in the morning; the hmF2 from the COSMIC tends to be overestimated in the morning and underestimated in the afternoon.

Details

Title
The Validation of FORMOSAT-3/COSMIC Measurements in the Middle Latitude Region of China with Ionosonde Observations during 2015–2018
Author
Hu, Liangchen 1   VIAFID ORCID Logo  ; Fanfan Su 1 ; Zhu, Fuying 1 ; Li, Xinxing 1 

 Institute of Seismology, CEA, Wuhan 430071, China; Key Laboratory of Earthquake Geodesy, CEA, Wuhan 430071, China; Hubei Earthquake Administration, Wuhan 430071, China 
First page
528
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22181997
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728548937
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.