It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Liquid manipulation is the foundation of most laboratory processes. For macroscale liquid handling, both do-it-yourself and commercial robotic systems are available; however, for microscale, reagents are expensive and sample preparation is difficult. Over the last decade, lab-on-a-chip (LOC) systems have come to serve for microscale liquid manipulation; however, lacking automation and multi-functionality. Despite their potential synergies, each has grown separately and no suitable interface yet exists to link macro-level robotics with micro-level LOC or microfluidic devices. Here, we present a robot-assisted acoustofluidic end effector (RAEE) system, comprising a robotic arm and an acoustofluidic end effector, that combines robotics and microfluidic functionalities. We further carried out fluid pumping, particle and zebrafish embryo trapping, and mobile mixing of complex viscous liquids. Finally, we pre-programmed the RAEE to perform automated mixing of viscous liquids in well plates, illustrating its versatility for the automatic execution of chemical processes.
Lab-on-a-chip systems have been widely used in microscale liquid manipulation and greatly benefit from automation. Durrer et al. show a robot-assisted acoustofluidic end effector system, comprising a robotic arm and an acoustofluidic device, that combines both robotic and microfluidic functionalities.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 ETH Zurich, Acoustic Robotics Systems Lab, Institute or Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780)
2 University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650)
3 University of Nebraska-Lincoln, Department of Mechanical & Materials Engineering, Lincoln, USA (GRID:grid.24434.35) (ISNI:0000 0004 1937 0060)