Abstract
Background
The analysis of hair samples for the detection of drugs has become one of the convincing strategies in the field of forensic toxicology. A large number of cases concerning heroin abuse or its byproducts have been documented under the Control of Narcotic Substances Act, 1997, over the past decade. The present study was carried out with an aim to evaluate the primary metabolite of heroin, i.e., 6-monoacetylemorphine (6-MAM), in hair samples of addicts and subjects undergoing rehabilitation, thereafter accessing the success rate of the rehabilitation program at the de-addiction center.
Results
Hair samples were randomly collected from 20 regular heroin addicts and 20 heroin addicts from their past, from the rehabilitation center, of different age groups. Samples were cleaned, digested, and extracted using an alkaline digestion mediator methyl tertiary butyl ether, followed by quantification of 6-MAM via gas chromatography–mass spectrometry (GC–MS). The mean concentration of 6-MAM in regular heroin addicts detected was 7.80 ng/mg and 2.34 ng/mg in samples of subjects undergoing rehabilitation at the de-addiction center, respectively.
Conclusion
Traces of 6-MAM in the hair sample of heroin addicts can be efficiently detected days after the last intake of heroin. In addition to that, our findings also give an idea for future evaluating the approximate timeframe for detection of 6-MAM and/or other metabolites of heroin in the hair sample. However, in the future, by carefully analyzing the hair samples that can be taken from rehabilitation centers from target subjects at different time intervals, the exact duration of traceable quantity of 6-MAM can be determined in the hair sample. Finally, it can be concluded that there is a significant success rate of the rehabilitation program at de-addiction centers in connection with dragging the 6-MAM level from the body.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
 
 
1 University of the Punjab, Department of Pharmacy, Faculty of Science, Lahore, Pakistan (GRID:grid.11173.35) (ISNI:0000 0001 0670 519X)
2 University of the Punjab, Department of Pharmacy, Faculty of Science, Lahore, Pakistan (GRID:grid.11173.35) (ISNI:0000 0001 0670 519X); Government College University, Department of Chemistry, Faculty of Life Science, Lahore, Pakistan (GRID:grid.411555.1) (ISNI:0000 0001 2233 7083)
3 Department of Management Science and Engineering Xi’an Jiaotong University, School of Management, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243)
4 Government College University, Department of Chemistry, Faculty of Life Science, Lahore, Pakistan (GRID:grid.411555.1) (ISNI:0000 0001 2233 7083)





