Abstract

The lack of a theory capable of connecting the amino acid sequence of a light-absorbing protein with its fluorescence brightness is hampering the development of tools for understanding neuronal communications. Here we demonstrate that a theory can be established by constructing quantum chemical models of a set of Archaerhodopsin reporters in their electronically excited state. We found that the experimentally observed increase in fluorescence quantum yield is proportional to the computed decrease in energy difference between the fluorescent state and a nearby photoisomerization channel leading to an exotic diradical of the protein chromophore. This finding will ultimately support the development of technologies for searching novel fluorescent rhodopsin variants and unveil electrostatic changes that make light emission brighter and brighter.

Arch-3 rhodopsin variants are common fluorescent reporters of neuronal activity. Here, the authors show with quantum chemical modelling that a set of these proteins reveals a direct proportionality between their observed fluorescence intensity and the stability of an exotic excited-state diradical intermediate.

Details

Title
On the fluorescence enhancement of arch neuronal optogenetic reporters
Author
Barneschi, Leonardo 1 ; Marsili, Emanuele 2   VIAFID ORCID Logo  ; Pedraza-González, Laura 3   VIAFID ORCID Logo  ; Padula, Daniele 1   VIAFID ORCID Logo  ; De Vico, Luca 1   VIAFID ORCID Logo  ; Kaliakin, Danil 4   VIAFID ORCID Logo  ; Blanco-González, Alejandro 4   VIAFID ORCID Logo  ; Ferré, Nicolas 5 ; Huix-Rotllant, Miquel 5   VIAFID ORCID Logo  ; Filatov, Michael 6   VIAFID ORCID Logo  ; Olivucci, Massimo 7   VIAFID ORCID Logo 

 Università di Siena, Dipartimento di Biotecnologie, Chimica e Farmacia, Siena, Italy (GRID:grid.9024.f) (ISNI:0000 0004 1757 4641) 
 Università di Siena, Dipartimento di Biotecnologie, Chimica e Farmacia, Siena, Italy (GRID:grid.9024.f) (ISNI:0000 0004 1757 4641); University of Durham, Department of Chemistry, Durham, United Kingdom (GRID:grid.8250.f) (ISNI:0000 0000 8700 0572); University of Bristol, Centre for Computational Chemistry, School of Chemistry, Bristol, BS8 1TS, United Kingdom (GRID:grid.5337.2) (ISNI:0000 0004 1936 7603) 
 Università di Siena, Dipartimento di Biotecnologie, Chimica e Farmacia, Siena, Italy (GRID:grid.9024.f) (ISNI:0000 0004 1757 4641); Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy (GRID:grid.5395.a) (ISNI:0000 0004 1757 3729) 
 Bowling Green State University, Department of Chemistry, Bowling Green, USA (GRID:grid.253248.a) (ISNI:0000 0001 0661 0035) 
 Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, Marseille, France (GRID:grid.462456.7) (ISNI:0000 0004 4902 8637) 
 Kyungpook National University, Department of Chemistry, Daegu, South Korea (GRID:grid.258803.4) (ISNI:0000 0001 0661 1556) 
 Università di Siena, Dipartimento di Biotecnologie, Chimica e Farmacia, Siena, Italy (GRID:grid.9024.f) (ISNI:0000 0004 1757 4641); Bowling Green State University, Department of Chemistry, Bowling Green, USA (GRID:grid.253248.a) (ISNI:0000 0001 0661 0035); University of Strasbourg Institute for Advanced Studies, Strasbourg, France (GRID:grid.11843.3f) (ISNI:0000 0001 2157 9291) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2729737447
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.